Interface and packages

interface

* Like a class, an interface can have methods and variables, but the
methods declared in an interface are by default abstract (only method
signhature, no body).

* If a class implements an interface and does not provide method bodies
for all functions specified in the interface, then the class must be declared
abstract.

* An interface is declared by using the interface keyword.

* All the methods in an interface are declared with the empty body, and all
the fields are public, static and final by default.

 The Java compiler adds public and abstract keywords before the
interface method. Moreover, it adds public, static and final keywords
before data members.

* A class that implements an interface must implement all the methods
declared in the interface.

Interface fields are public, static and final by default, and the methods are public and abstract.

interface Printable{ interface Printable{

int MIN=5; =i public static final int MIN=5;
e —»_compiler —» : e
void print(); e public abstract void print();
} }
Printable java Printable class

// interface

interface Animal {
public void animalSound(); // interface method (does not have a body)

public void run(); // interface method (does not have a body)
}
The relationship between classes and interfaces

class interface interface

T extends | implements Textends

class class interface

// Interface

interface Animal
public void animalSound(); // interface method (does not have a body)
public void sleep(); // interface method (does not have a body)

// Pig "implements"” the Animal interface
class Pig implements Animal {
public void animalSound() {
// The body of animalSound() is provided here
System.out.println("The pig says: wee wee");
¥
public void sleep() {
// The body of sleep() is provided here
System.out.println("Zzz");

class Main {
public static wvoid main(String[] args) {
Pig myPig = new Pig(); // Create a Pig object
myPig.animalSound();
myPig.sleep();

oLike abstract classes, interfaces cannot be used to create objects

eInterface methods do not have a body - the body is provided by the "implement" class
eOn implementation of an interface, you must override all of its methods

eInterface methods are by default abstract and public

eInterface attributes are by default public, static and final

eAn interface cannot contain a constructor (as it cannot be used to create objects)
Accessing Implementations Through Interface References:

//Interface declaration: by first user

interface Drawable{

void draw();

}

//Implementation: by second user

class Rectangle implements Drawable{

public void draw(){System.out.printIn("drawing rectangle");}
}

class Circle implements Drawable{

public void draw(){System.out.printIn("drawing circle");}

}

//Using interface: by third user

class TestInterface1{

public static void main(String args[]){

Drawable d=new Circle();//In real scenario, object is provided by method e.g. getDrawable()

d.draw();
1

interface Bank{

float rateOfInterest();

}

class SBlI implements Bank{

public float rateOflInterest(){return 9.15f;}
}

class PNB implements Bank{

public float rateOfinterest(){return 9.7f;}
}

class TestInterface?2{

public static void main(String[] args){
Bank b=new SBI();
System.out.println("ROI: "+b.rateOfInterest());

1

Multiple inheritance in Java by interface

If a class implements multiple interfaces, or an interface extends multiple interfaces, it is known as multiple inheritance.

interface interface interface interface
| 3 |
\ /
> \ . ’ o implements extends
\ yal

class interface

interface FirstIntertface {
public void myMethod(); // interface method

interface SecondInterface {
public void myOtherMethod(); // interface method

class DemoClass implements FirstInterface, SecondInterface {
public void myMethod() {
System.out.println("Some text..");
h
public void myOtherMethod() {
System.out.println("Some other text...");

class Main {
public static void main(String[] args) {
DemoClass myObj = new DemoClass();
myObj.myMethod();
myObj.myOtherMethod();

Multiple inheritance is not supported through class in java, but it is possible by an interface

multiple inheritance is not supported in the case of class because of ambiguity. However, it is supported in case of an
interface because there is no ambiguity. It is because its implementation is provided by the implementation class.

interface Printable{
void print();

}

interface Showable{
void print();

}

class TestInterface3 implements Printable, Showable{
public void print(){System.out.printin("Hello");}
public static void main(String args|[]){

Testinterface3 obj = new TestInterface3();

obj.print();

}

}

https://www.javatpoint.com/object-and-class-in-java

Interface inheritance

A class implements an interface, but one interface extends another interface.

interface Printable{

void print();

}

interface Showable extends Printable{
void show();

}

class TestInterface4 implements Showable{

public void print(){System.out.printin("Hello");}

public void show(){System.out.printin("Welcome");}

public static void main(String args[]){
Testinterface4 obj = new TestInterface4();
obj.print();

obj.show();

}

}

packages

* A java package is a group of similar types of classes, interfaces and sub-
packages.

* We can assume package as a folder or a directory that is used to store
similar files.

» Package in java can be categorized in two forms:
* built-in packages:math, util, lang, i/o etc are the example of built-in packages.

 user-defined packages:Java package created by user to categorize their project's
classes and interface are known as user-defined packages.

» Advantage of Java Package

* 1) Java package is used to categorize the classes and interfaces so that
they can be easily maintained.

« 2) Java package provides access protection.
 3) Java package removes naming collision.

Built-in Packages

These packages consist of a large number of classes
which are a part of Java APl.Some of the commonly used
built-in packages are:

1) java.lang: Contains language support classes(e.g
classed which defines primitive data types, math

operations, String, StringBuffer, Thread). This package is
automatically imported.
2) java.io: Contains classed for supporting input / output

operations. 208 ik awt

3) java.util: Contains utility classes which implement data

structures like Linked List, Dictionary and support ; for /‘ / \ \
Date / Time operations,Scanner. System.class || String.class Arraylist.class | | Map.class Button.class classes
4) java.applet: Contains classes for creating Applets.
5) java.awt: Contain classes for implementing the

components for graphical user interfaces (like button ,
;menus etc).

java java package

Subpackage
of java

Pl

" r supporting networking

R ~
« Import a Package
To import a whole package, end the sentence with an asterisk sign (*).

import java.util.*;

Import a Class

To use a class or a package from the library, you need to use the import keyword:

import package.name.Class; // Import a single class

import package.name.*; // Import the whole package

import java.util.Scanner;

In the example above, java.util is a package, while Scanner is a class of the java.util package.
To use the Scanner class, create an object of the class and use any of the available methods found in the Scanner class

import java.util.Scanner;

class MyClass {
public static void main(String[] args) {
Scanner myObj = new Scanner(System.in);

System.out.println(”Enter username”);

String userName = myObj.nextLine();

System.out.println(”Username is: + userName) ;

[——

!_I_J

User-defined packages:
These are the packages that are defined by the user.

How to Create a user defined package:

*Choose the name of the package

*Include the package command as the first line of code in your Java Source File.
*The Source file contains the classes, interfaces, etc you want to include in the package

*Compile to create the Java packages

package nameOfPackage;

While creating a package, care should be taken that the statement for creating package must be written
before any other import statements

package p1;
class c1

{
public void m1()

{

System.out.printin("m1 of c1");

}

public static void main(string
args])

{

c1 obj = new c1();
obj.m1();

}

}

1.Save the file as cl.java into the folder d:\ECE
now the file is at location d:\ECE\c1.java

2. Go to command prompt then Compile and create package

D:\ECE>javac —d . cl.java

The above command forces the compiler to create a package in the current working directory.

-d means create a package(directory)

. means it creates a package p1 in the current working directory ie., d:\ECE and place the class file in d:\ECE\p1
D:\ECE\p1\c1l.class

D:\ECE> javac —d .. Cl.java
The above command creates a package in the parent working directory.
D:\p1\cl.class

package pl.p2;

class cl{
public void ml() {
System.out.println("ml of cl1l");

}
}

D:\ECE>javac —d . cl.java
D:\ECE\p1\p2\cl.class
Instead of . We can also specify the path where we want to create a package.

3. Run the program: d:\ECE> iava pl.n2.cl

How to Import Package

To create an object of a class (bundled in a package), in your code, you have to use its fully qualified name.

java.awt.event.actionlListner object = new java.awt.event.actionlListner();

Instead, it is recommended you use the import statement.

import packageName;

import java.awt.event.*; // * signifies all classes in this package are imported
import javax.swing.JFrame // here only the JFrame class is imported

//Usage
JFrame f = new JFrame; // without fully qualified name.

package p3;
import pl.*; //imports classes only in package pl and NOT
class c3{
public wvoid m3(){
System.out.println("Method m3 of Class c3");
¥
public static void main(String args[]){
cl objl = new cl1();
objl.ml();

}

1.Save the file with name c3.java in D:\ECE
2.Compile the program

D:\ECE>javac —d . C3.java

3.Create package at d:\ECE\p3\c3.class

4. Run the program

D:\ECE> java p3.c3

in the sub-package p2

